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It was shown in [1-4] that the reflection of a sound wave or its transmission 
through a shock front should be accompanied by attenuation or intensification of 
the wave is regarded as a discontinuity. In accordance with current representa- 
tions [5, 6], a shock wave includes a viscous shock and a lengthy relaxation 
zone. Equilibrium is established with respect to translational and rotational 
degrees of freedom in the viscous shock and with respect to internal degrees of 
freedom in the relaxation zone. The result of the interaction of the shock and 
sound waves is determined by the relationship between the length of the sound 
wave and the width of the shock wave. 

For low-frequency sound satisfying the condition m~ << i, where m is the frequency of 
the sound and �9 is the longest relaxation time, the viscous shock and the relaxation zone 
can be regarded as a discontinuity. In this case, the result of the interaction is found, 
for example, from the compatibility conditions. This was done in [7]. However, in contrast 
to [7], where investigators examined shock waves in a gas with a constant adiabatic expo- 
nent ~, the value of ~ for strong shock waves in a polyatomic gas may be different on both 
sides of the wave because almost no vibrations are excited in front of the wave at the 
typical temprature T % 300~ and the gas behind the wave is excited to oscillate. 

The counter interaction of a shock wave and sound wave reinforces the latter. Mean- 
while, with allowance for the difference in ~, the transmission factor, determined as the 
ratio of the amplitudes of the transmitted and incident sound waves, is equal to 

M + I  ~M~(%--~) (=- -O+(M+~)  ~ ( i )  
Kt = M2 + i M~ (V~ -- t) (~ . -  t) -F (M~ + t) 

Here, M 2 is the Mach number in the flow behind the wave; a = Pz/P2; P is the density; the 
indices i and 2 denote parameters of the gas in front of the wave and at the end of the 
relaxation zone, respectively. For sufficiently strong shock waves, the enthalpy in the 
relaxation zone can be considered constant [6]. In this case 

(7/2)kT + % = (7/2)kT', ( 2 )  

w h e r e  k i s  t h e  B o l t z m a n n  c o n s t a n t ;  av  i s  t h e  mean v i b r a t i o n a l  e n e r g y  p e r  m o l e c u l e ;  t h e  p r i m e  
d e n o t e s  p a r a m e t e r s  o f  t h e  g a s  a t  t h e  b e g i n n i n g  o f  t h e  r e l a x a t i o n  z o n e ,  w h i l e  

MS 77i/72 " ( ? i - - t }  M s + 2  7 (V i - l )  Ms-~-2 
2 = 7+2(Sv)s/T s 2~IM~ ~ +  I~ a =  7+2(ev)2/T s (VI~-t~M s . 

The p a t t e r n  i s  s i m i l a r  when a g a i n i n g  s o u n d  wave  i s  r e f l e c t e d  f r o m  a s h o c k  wave [ 7 ] ,  
t h e  o n l y  d i f f e r e n c e  b e i n g  t h a t  v i b r a t i o n a l  d e g r e e s  o f  f r e e d o m  s h o u l d  be  c o n s i d e r e d  i n  ~2.  
The r e f l e c t i o n  c o e f f i c i e n t ,  d e t e r m i n e d  a s  t h e  r a t i o  o f  t h e  a m p l i t u d e s  o f  t h e  r e f l e c t e d  and  
i n c i d e n t  s o u n d  w a v e s ,  

Kr = - -  
(M s _ l )  s 2 ( 2 - ~ ' s )  M 2 - ? 2  + ~ " 

]~ �9 2~'2M2 -- ?2 "~ i 
(3) 

where 

/0=1+MS I+ " 

Moscow. Translated from zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
pp. 90-94, May-June, 1986. Original article submitted February 18, 1985. 

, 

402 0021-8944/86/2703-0402512.50 �9 1986 Plenum Publishing Corporation 



For nitrogen at T = 300~ p = 9.8"103 Pa, and M = 7, we obtain K t = 32 and K r = 0.18. 

For high-frequency sound at w~ >> i, mx0 << 1 (~0 is the transit time), the pattern 
of interaction is more complicated. As before, the viscous shock can be considered a dis- 
continuity and we can use Eqs. (i) and (3) to calculate sound reflection and transmission. 
However, when the sound propagates into the relaxation zone, it is now necessary to consider 
anomalous absorption. This absorption will be determined by the specific structure of the 
relaxation zone. 

We will examine the absorption of sound in a zone of vibrational relaxation behind a 
shock wave front. Analysis of standard hydrodynamic equations in a Eulerian approximation 
together with the relaxational equation for the vibrational energy of a diatomic gas in 
the case of small perturbations of the form 

a - . - a ~  e x p ( i k x x _ ~ t )  

gives the following for the absorption coefficient (~ >> i) [8] 

(c-.~- q) (%0 ..... e,O/(kr) -{ "v (4)  
Im k~ = c-1/2(c-F t)-~/2 (kT/"O '/2T 

Here, c is the heat capacity associated with the translational-rotational degrees of free- 
dom (d~ = kcdT); e is the mean translational-rotational energy per molecule; Ev0 is the 
equilibrium value of vibrational energy with a given translational temperature T; c V is the 
heat capacity associated with the vibrational degrees of freedom for the given translational 
temperature l'(de~o ~ kcvdT) ;  q = BT--1/3/3 , where B is determined from the Landau-Teller relation 
for the time of vibrational relaxation T ~ (l~)-exp(BT-i/3) [9]. It is evident from (4) 
that the presence of a nonequilibrium distribution of vibrational energy may lead to a 
substantial increase in the absorption coefficient. However, absorption of the type (4) in 
the relaxation zone needs to be taken into account only when it is greater than or comparable 
to Stokes absorption. If we use the following expression for the Stokes absorption 
coefficient 

(Im kx)., = ~)---j-~ [ ''!~ i i , 
2P"~ L 3 ,i + • -- c~,) ] (5 )  

where N is the shear viscosity coefficient; v s is the sonic velocity; K is the thermal 
conductivity; Cp is the isobaric specific heat of the gas, then we obtain 

hn k,: (c + q) (%0 -- %)/(kr) + c v 
(Ira kx) s c 1/2 (c .~- 1)a/2o2~0~ 

(6)  

~)2 2 Here, it is assumed that ~ ] ~ P  ~To, • , while v 2 = u Since c ~ i in (6), the 
given relaxation mechanism predominates when s 

(.o~"'ro'r << (c + q)(%0 --  %)/(kT) -{- c v. (7 )  

C o n d i t i o n  (7 )  i s  s a t i s f i e d  f o r  s t r o n g  shock  w a v e s ,  when%0/(kT ) ~ c  v ~  i w i t h  ~2~0~ << 1. 
C o n v e r s e l y ,  S t o k e s  a b s o r p t i o n  i s  p r e d o m i n a n t  when ~ T 0 m  >> 1 f o r  weak shock  waves ,  where  
(c + q)(%0- %)/(kT)+ c v << ~ With allowance for the relaxation equation for vibrational 
energy 

d s J d x  - "  (%0 -- %)l(u'~) 

we can write 

%0 - -  8 ,  Op,'~ d% ( 8 )  

where  u i s  t h e  v e l o c i t y  o f  t h e  g a s  b e h i n d  t h e  shock  wave (u  = D0~/O);  D i s  t h e  v e l o c i t y  o f  
t h e  wave.  A f t e r  i n s e r t i o n  o f  (8 )  i n t o  (4 )  and t h e  u s e  o f  ( 2 ) ,  we o b t a i n  

Imk~. -=- c-'/ '~(c + _, [(kT/m),/2~: 2 p2T~ ~kT~m)l/~ J" 
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The first term in the right side of (9) corresponds to relaxational absorption in the propaga- 
tion of sound in an initially equilibrium gas with a temprature T, while the second term 
corresponds to the effect of vibrational nonequilibrium. 

To determine the integral absorption, it is necessary to consider that Eqs. (4) and (8) 
are valid in a stationary gas. In the relaxation zone, the sound wave, moving away from the 
front, moves together with the gas flow. This means that we should integrate over the 
length s = Vst in a coordinate system which moves with the flow. Thus, in the frame of 
reference connected with the front s = s + ut, 

Im k~ (x*) dx* = J hn kx (x) - -  dx. ( 10 ) 
b ' s~-  U 

. 0 

Since T-I/3 changes little in the relaxation zone, the integral (i0) from the second term 

of the right side of (9) is equal to 

j ' I m k : ~ d z  " [(7M2 "-- t ) ( M ~ - ~ 5 ) ] I / 2 T M 2 " g 5  ( l l )  9,8(2,5 + q )  ln  
7 (M" + 5) 

[(7M ~ - -  i) (M 2 -~--5)] 1/2 q- 7 + 2 ( % ) ~ / r  u 

In this case, the absorption coefficient depends on M only indirectly, through q, because 
q is determined by the temperature behind the shock wave and this temperature is a function 

of M. 

The absorption coefficient determined by vibrational nonequilibrium is equal to about 
0.85 for the above-examined numerical example. The contribution of the relaxational term 
obtained by integrating (i0) in the first term of (9) is equal to about 0.92. Such a 
difference becomes understandable if we consider that the first term in the right side of 

t k p t (4) exceeds the second term by a factor of (c-I-q)evo/( cvT ) at the beginning of the relaxa- 
tion zone, this factor amounting to approximately three in the present example; this differ- 
ence decreases during relaxation, and the integral (II) exceeds the corresponding integral 

from the relaxation term by a factor of roughly two. 

In contrast to the above case, sound passes through the relaxation zone twice in the 
interaction of a shock wave with a high-frequency sound wave which catches up to it. Thus, 
the total reflection coefficient will be equal to the product KIK2Kr, where K I is determined 
by the integral (I0); K 2 is determined by an integral analogous to (I0) but with the velocity 
difference v s - u in the denominator, which considers the change in the direction of the 
soundpropagation; K r is determined by Eq. (3) with ~ = 7/5. For the numerical example 

examined above, we obtain K r = 0.07 at mT >> i. 

If the time of rotational relaxation ~R is greater than T o , then when mT R >> i and 
m~0 < i it is necessary to consider sound absorption in the zone of rotational relaxation. 
The investigation proceeds in a manner fully analogous to the previous case. Assuming 

~R ~ const in the relaxation zone, we have 

[ m  Ir = 2 k T  

It is evident from (12) that nonequilibrium absorption at the beginning of the relaxation zone 
exceeds anomalous absorption by a factor of 1.5. For the above numerical example, K t = 30, 

K r = 0.12 at mT R << i and K t = 16, K r = 0.02 at mT R >> I. 

An evaluation made for Stokes absorption in a manner fully analogous to the above shows 
that Stokes absorption exceeds anomalous absorption at the frequencies w(ToTR)z/2 >> I. It 
should be noted that Eq. (5) is valid for the frequencies mT 0 << I. 

To evaluate the absorption of hypersound at ~T 0 >> i, the front of the shock wave 
cannot be considered a discontinuity, and we must take into account the molecular structure 
of the viscous shock. We will use the model equation 

l . l l l d x  = ( I  - -  Io)1%, 
where f(x) is a nonequilibrium distribution function in the shock front; f0(x) is a Maxwell 
temperature distribution with a temperature determined by the mean store of transla- 
tional energy; x is the distance from the center of the shock front. In this case, the 
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problem reduces to the familiar problem of the propagation of hypersound in a gas with a 
Maxwellian distribution function f0 [ii]. The solution of this problem is well-known [12]: 

z,~ ~ 2(5kTl(3m)) 'I'>, I m k ~  ~ O,3~(ml(kT)) w~'. (13) 

Here, ~ is the frequency in the coordinate system connected with the flow. To calculate 
the integral absorption coefficient, we will assume that f is a bimodal distribution 
function [13]. Then 

C i ~ (kT/m)l/'z dx, ( 14 ) I m  k=,dx 2r 

where p and T are functions of x [13]; ~(x) = mVs/(V s + u); ~ is the frequency in the 
coordinate system connected with the front. For the given numerical example we obtain 
K t ~ exp(-3"10-9~). Since the integral temperature in the shock front increases exponen- 
tially, the integral absorption coefficient turns out to be the average of the values of 
absorption before and after the wave. The absorption coefficient for hypersound is very 
large (see (13)), and damping of the signal occurs over a length on the order of the mean 
free path. 

Figure I shows results of calculation of the transmission coefficient K t and reflection 
coefficient K r (curves i and 2) for sound in the zone of vibrational relaxation. The pattern 
for rotational relaxation will be similar in the corresponding frequency range. It is 
evident from the figure that the above coefficients are both dependent on frequency. They 
have their largest value for low-frequency sound m~ << i. At frequencies m~ ~ i, the 
coefficients change due to the effect of vibrational relaxation (the form of the curve at 
~ ~ i was not examined and is indicated by dashes in the figure). In the frequency range 
i/~ << ~ << i/(~T0)i/2, the coefficients K t and K r are constant, since anomalous absorption 
(4) and the shock transmission coefficient (i) are independent of frequency. At frequencies 

~ i/(~0)I/2 and higher, the signal decays rapidly due to the predominance of Stokes 
absorption (in Kr, t ~ -m2). The dependence of the coefficients K t and K r on frequency lead 
to a change in the form of the signal in the interaction of sound with a shock wave. In this 
case, a Doppler frequency shift will also occur. This phenomenon was examined in [1-4]. 
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EXPERIMENTAL STUDY OF WAVE PROCESSES IN AN 

AQUEOUS SUSPENSION OF BENTONITE CLAY 

V. A. Pyzh UDC 532.593:532.584 

The practical value of studying wave propagation in water suspensions of bentonite 
stems from the broad use of these disperse systems in oil-well drilling. 

As was shown in [i, 2], wave processes in bentonite have several characteristic 
features, including anomalous oscillation peaks in the incident wave which are consider- 
ably greater than the pressure of the initiating pulse, a successive increase in pressure 
in these peaks in a series of tests conducted with the same boundary conditions for 
initiation, etc. The studies [I, 2] described the results of investigations only in a 
dilute suspension of bentonite with a mass concentration c = 6% for the disperse phase in 
water. This concentration is near the critical concentration at which structure formation 
can take place in the mixture (see [3] and its bibliography, for example). Here, the 
impulsive pressures were recorded over a relatively short time interval - about I msec. 

The goal of the present study is to further experimentally investigate waves in a 
system with a developed three-dimensional structure (c = 10%). The chosen time of observa- 
tion of the waves is longer - on the order of I0 msec. This allows us to record the passage 
not only of the incident waves, but also of reflected waves, unloading waves, etc. along 
the entire tube. 

i. Experimental Unit. The compression waves were initiated in a vertical shock tube 
[2]. The measurements were organized as follows. Three groups of pressure gauges were 
located along the low-pressure chamber (LPC) A, B, C at distances of 2, 5, 7 m from the 
diaphragm. The distance between two gages in a group Ax = 0.25 m. The triggering gauges 
controlled the measurement circuit - the front of the incident wave successively initiated 
electrical signals which alternately activated oscillographs and frequency meters operating 
in the slave rgeime. This was achieved by synchronizing the oscillograph readings with 
respect to time - the intervals measured by the frequency meters ~i and ~2 corresponded to 
the time of passage of the wave from group to group or the time of delay of activation of 
the oscillographs relative to one another. 

2. Trial Experiments. Water was chosen as the standard model liquid. Its low viscosity 
and the linear dependence of its volume on pressure up to I00 MPa made it possible to examine 
the results obtained from shock loading of the water column in an acoustic approximation. 

A typical test is shown in Fig. i. The intensity of the incident wave Pl is close to 
the pressure of the driving gas in the high-pressure chamber (HPC) - Pe = 2.4 MPa. The 
initial pressure in the LPC P0 % 0.I MPa. The result is shown in the form of a kinematic 
curve in the coordinates x (height of the liquid column) - t (time) and illustrates the 
process of transmission of the compression wave (solid line) and rarefaction wave (dashed 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
pp. 94-101, May-June, 1986. Original article submitted February 20, 1985. 

406 0021-8944/86/2703-0406512.50 �9 1986 Plenum Publishing Corporation 


